Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide

Identifieur interne : 001A24 ( Main/Repository ); précédent : 001A23; suivant : 001A25

In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide

Auteurs : RBID : Pascal:13-0039765

Descripteurs français

English descriptors

Abstract

At ambient temperature and pressure, most of the semiconductor materials are brittle: this is the case of the III-V compound semiconductor indium antimonide, InSb. To study the role of dislocation nucleation at the onset of brittle-to-ductile transition, InSb micro-pillars have been fabricated by focused ion beam and in situ compressed at room temperature in a scanning electron microscope, in order to correlate the observation of slip traces at the pillar surface and features of the stress-strain curve. Transmission electron microscopy (TEM) thin foils have been cut out of the pillars to study the deformation microstructure. The TEM study of dislocations and the observation of slip traces at surfaces show that increasing the surface-to-volume ratio of the pillars modifies the dislocation nucleation conditions and favors plasticity even at room temperature. The role of dislocation nucleation from free surfaces is thus discussed within the larger context of the micro-pillar compression technique and extrinsic size effects.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0039765

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide</title>
<author>
<name sortKey="Thilly, L" uniqKey="Thilly L">L. Thilly</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut Prime, CNRS-University of Poitiers-ENSMA, SP2MI</s1>
<s2>86962 Futuroscope</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Poitou-Charentes</region>
<settlement type="city">Futuroscope</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ghisleni, R" uniqKey="Ghisleni R">R. Ghisleni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory for Materials Technology, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstr. 39</s1>
<s2>3602 Thun</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>3602 Thun</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swistak, C" uniqKey="Swistak C">C. Swistak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory for Materials Technology, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstr. 39</s1>
<s2>3602 Thun</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>3602 Thun</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michler, J" uniqKey="Michler J">J. Michler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory for Materials Technology, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstr. 39</s1>
<s2>3602 Thun</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>3602 Thun</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0039765</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0039765 INIST</idno>
<idno type="RBID">Pascal:13-0039765</idno>
<idno type="wicri:Area/Main/Corpus">001388</idno>
<idno type="wicri:Area/Main/Repository">001A24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1478-6435</idno>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brittle-ductile transitions</term>
<term>Deformation</term>
<term>Dislocation</term>
<term>Dislocation nucleation</term>
<term>Ductile brittle transition</term>
<term>Focused ion beam technology</term>
<term>Free surface</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium antimonides</term>
<term>Microstructure</term>
<term>Pillared structure</term>
<term>Plasticity</term>
<term>Scanning electron microscopy</term>
<term>Size effect</term>
<term>Slip</term>
<term>Stress strain relation</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déformation</term>
<term>Transition fragile ductile</term>
<term>Transition ductile fragile</term>
<term>Semiconducteur III-V</term>
<term>Antimoniure d'indium</term>
<term>Composé III-V</term>
<term>Germination dislocation</term>
<term>Structure à pilier</term>
<term>Technologie faisceau ion focalisé</term>
<term>Microscopie électronique balayage</term>
<term>Glissement</term>
<term>Relation contrainte déformation</term>
<term>Microscopie électronique transmission</term>
<term>Microstructure</term>
<term>Dislocation</term>
<term>Plasticité</term>
<term>Surface libre</term>
<term>Effet dimensionnel</term>
<term>6172L</term>
<term>8140L</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">At ambient temperature and pressure, most of the semiconductor materials are brittle: this is the case of the III-V compound semiconductor indium antimonide, InSb. To study the role of dislocation nucleation at the onset of brittle-to-ductile transition, InSb micro-pillars have been fabricated by focused ion beam and in situ compressed at room temperature in a scanning electron microscope, in order to correlate the observation of slip traces at the pillar surface and features of the stress-strain curve. Transmission electron microscopy (TEM) thin foils have been cut out of the pillars to study the deformation microstructure. The TEM study of dislocations and the observation of slip traces at surfaces show that increasing the surface-to-volume ratio of the pillars modifies the dislocation nucleation conditions and favors plasticity even at room temperature. The role of dislocation nucleation from free surfaces is thus discussed within the larger context of the micro-pillar compression technique and extrinsic size effects.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>25-27</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Nano-mechanical testing in materials research and development III</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>THILLY (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GHISLENI (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SWISTAK (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MICHLER (J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DEHM (Gerhard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MICHLER (Johann)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PHARR (George M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut Prime, CNRS-University of Poitiers-ENSMA, SP2MI</s1>
<s2>86962 Futuroscope</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratory for Materials Technology, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstr. 39</s1>
<s2>3602 Thun</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Leoben and Austrian Academy of Sciences</s1>
<s2>Leoben</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Tennessee and Oak Ridge National Laboratory</s1>
<s2>Oak Ridge</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>EMPA</s1>
<s2>Thun</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>3315-3325</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000502047350130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0039765</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>At ambient temperature and pressure, most of the semiconductor materials are brittle: this is the case of the III-V compound semiconductor indium antimonide, InSb. To study the role of dislocation nucleation at the onset of brittle-to-ductile transition, InSb micro-pillars have been fabricated by focused ion beam and in situ compressed at room temperature in a scanning electron microscope, in order to correlate the observation of slip traces at the pillar surface and features of the stress-strain curve. Transmission electron microscopy (TEM) thin foils have been cut out of the pillars to study the deformation microstructure. The TEM study of dislocations and the observation of slip traces at surfaces show that increasing the surface-to-volume ratio of the pillars modifies the dislocation nucleation conditions and favors plasticity even at room temperature. The role of dislocation nucleation from free surfaces is thus discussed within the larger context of the micro-pillar compression technique and extrinsic size effects.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11G05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D11G01</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A40L</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Déformation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Deformation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Verformung</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Deformación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transition fragile ductile</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Brittle-ductile transitions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transition ductile fragile</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ductile brittle transition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Uebergang duktil sproed</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transición ductil frágil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Germination dislocation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dislocation nucleation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Versetzungskeimbildung</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Germinación dílocación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure à pilier</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Pillared structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura con pilares</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Technologie faisceau ion focalisé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Focused ion beam technology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Rasterelektronenmikroskopie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Glissement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Slip</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Gleiten</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Deslizamiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Relation contrainte déformation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stress strain relation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Relación tensión deformación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="GER">
<s0>Transmissionselektronenmikroskopie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="GER">
<s0>Mikrogefuege</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dislocation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Dislocation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Versetzung</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Dislocación</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Plasticité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Plasticity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="GER">
<s0>Plastizitaet</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Plasticidad</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Surface libre</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Free surface</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Superficie libre</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Size effect</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="GER">
<s0>Groesseneffekt</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Efecto dimensional</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>6172L</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>8140L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>021</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Nano-mechanical testing in materials research and development. Conference</s1>
<s2>3</s2>
<s3>Lanzarote, Canary Islands ESP</s3>
<s4>2011-10-09</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0039765
   |texte=   In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024